- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Xiaowen (2)
-
Arenholz, Elke (1)
-
Chen, Lang (1)
-
Chen, Shanquan (1)
-
Chen, Zuhuang (1)
-
Das, Sujit (1)
-
Huang, Chuanwei (1)
-
Huang, Haoliang (1)
-
Jin, Dun (1)
-
Ke, Shanming (1)
-
Klewe, Christoph (1)
-
Liu, Yao (1)
-
Lu, Yalin (1)
-
Lu, Zhuo (1)
-
Lupi, Eduardo (1)
-
Martin, Lane_W (1)
-
Shafer, Padraic (1)
-
Wu, Meng (1)
-
Xu, Hu (1)
-
Xu, Jie (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, Shanquan; Zhou, Haiping; Ye, Xing; Chen, Zuhuang; Zhao, Jinzhu; Das, Sujit; Klewe, Christoph; Zhang, Lei; Lupi, Eduardo; Shafer, Padraic; et al (, Advanced Functional Materials)Abstract The ability to tailor a new crystalline structure and associated functionalities with a variety of stimuli is one of the key issues in material design. Developing synthetic routes to functional materials with partially absorbed nonmetallic elements (i.e., hydrogen and nitrogen) can open up more possibilities for preparing novel families of electronically active oxide compounds. Fast and reversible uptake and release of hydrogen in epitaxial ABO3manganite films through an adapted low‐frequency inductively coupled plasma technology is introduced. Compared with traditional dopants of metallic cations, the plasma‐assisted hydrogen implantations not only produce reversibly structural transformations from pristine perovskite (PV) phase to a newly found protonation‐driven brownmillerite one but also regulate remarkably different electronic properties driving the material from a ferromagnetic metal to a weakly ferromagnetic insulator for a range of manganite (La1−xSrxMnO3) thin films. Moreover, a reversible perovskite‐brownmillerite‐perovskite transition is achieved at a relatively low temperature (T≤ 350 °C), enabling multifunctional modulations for integrated electronic systems. The fast, low‐temperature control of structural and electronic properties by the facile hydrogenation/dehydrogenation treatment substantially widens the space for exploring new possibilities of novel properties in proton‐based multifunctional materials.more » « less
An official website of the United States government
